Du fait de la tolérance qui existe sur les valeurs de résistances, il est inutile de disposer d’un trop grand nombre de composants différents.
En effet, avec l’exemple précédent, on voit que la valeur nominale 10,5 kΩ ne servirait à rien puisqu’une résistance réelle de ce type pourrait être identique à un élément marqué 10 kΩ.
Ainsi, on ne fabrique que des résistances de certaines valeurs, appartenant à des séries normalisées conçues de telle façon qu’il y ait tout juste recouvrement des intervalles possibles pour les valeurs réelles
correspondant à des valeurs nominales consécutives.
Par exemple, dans la série de précision 5 %, la valeur qui suit 10 kΩ est 11 kΩ. La résistance minimale que peut atteindre le composant marqué 11 kΩ est 10,45 kΩ (l’écart par rapport à la valeur nominale est 5 % de 11 kΩ, soit 0,55 kΩ). Le recouvrement n’intervient qu’entre 10,45 kΩ et 10,5 kΩ, ce qui est pratiquement négligeable.
À chaque tolérance correspond une série normalisée. Le tableau 1.2 donne les différentes progressions utilisées. Les séries sont désignées par E6, E12… On indique ainsi le nombre de valeurs dans une décade (par exemple entre 10 et 100, 100 non compris). Le tableau fournit les valeurs comprises entre 10 et 100, mais il suffit d’ajouter ou de retrancher des zéros pour obtenir toutes les résistances possibles.
Les composants courants ont une tolérance de 5 % et même de 10 % pour les expérimentations ordinaires. On fait parfois appel à des résistances de précision, en général à 1 % ou à 2 %.
Pour des applications spécifiques (étalonnages), on trouve des éléments très précis : 0,1 % par exemple.
Les résistances sont normalement disponibles entre quelques dixièmes d’ohm et quelques dizaines de mégohms, mais les valeurs courantes ne descendent pas en dessous de quelques ohms et ne vont pas au-delà de quelques mégohms.
0 Comments